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ABSTRACT 
 

Granular fluids have received significant attention for their transport characteristics 
within rigid boundaries. In this work, we study the potential for amorphous granular beds 
themselves to serve as elastic boundaries for transport and manipulation of surface particles. In 
particular, we measure the effect of the mass and diameter of an intruding particle, supported and 
tossed by a periodic vibrofluidized granular bed, on its horizontal self-diffusivity using a two-
dimensional hard-sphere molecular dynamics simulation. Intruder mass and diameter scaling 
exponents are fitted and found to be consistent with dominant Stokes drift. Intruder types 
favorable for manipulation applications are identified. 
 
INTRODUCTION 
 

Granular fluids are an industrially and scientifically relevant class of vibrationally 
programmable matter [1]. Thin layers of hard spheres in a vertically oscillated container have 
demonstrated a rich set of spatial patterns beyond Faraday wave predictions that can be selected 
by tuning the container floor's oscillation frequency and amplitude [2-4]. More complex patterns 
can be selected with multiple frequency forcing [4]. In the continuum limit, arbitrary wave fields 
have even been demonstrated in traditional liquid tanks [5]. 

Such programmability suggests that granular fluid patterns might be harnessed as force 
fields for parallel manipulation tasks. Parallel manipulation of small numbers of parts using 
many degrees of actuation has received considerable theoretical [6-7] and experimental [8] 
attention. Parallel positional control of free bodies as short as 3 mm and as light as 8.6 g has been 
achieved using arrays of MEMS actuators [9]. However, the inverse problem of manipulating 
large numbers of parts with only a few degrees of actuation (“minimalist manipulation”) has 
received less attention. The most noteworthy accomplishment in this direction has been the 
demonstration of a planar manipulator with global rotational and translational degrees of 
freedom [10]. So far, such planar manipulators have only been able to positionally address 
centimeter-scale objects, necessitating new methods for minimalist manipulation at smaller 
length scales. Controlled tossing of surface impurities by patterned granular fluids is one 

promising approach, since granule diameters can be scaled down to 100 m while preserving 
pattern formation [11]. 

While the vertical dynamics of a large intruder particle submerged in a deep granular bed 
have been investigated previously (e.g., in connection with the Brazil nut effect), both 
experimentally [12,13] and numerically [14], the dynamics of an intruder at or near the surface 
of a thin granular layer have not been addressed. This report addresses the dynamics of surface 
impurities on vibrofluidized granular patterns with two-dimensional numerical simulations. 

THEORY 

 

Mater. Res. Soc. Symp. Proc. Vol. 1152 © 2009 Materials Research Society 1152-TT03-01



 Consider, as a model for surface intruder dynamics, self-diffusion in a standing wave 
potential 
 

U(x,t)  Acos 2x / sin ft  A

2
sin k1x 1t  sin k2x 2t    (1) 

 

for pattern wavelength , container vibration frequency f, 1 = 2 = f, and k1 = -k2 = 2/, when 
parameterized by horizontal self-diffusion coefficient D, defined by 
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      (2) 

 
Since U(x,t) is the sum of equal counter-propagating waves, no intruder drift velocity (Stokes 
drift) can be induced without diffusion [15]. 

However, discrete collisions of a large surface intruder with supporting granules 
constitute a diffusion mechanism. The drift velocity including diffusion [15] is given by 
 

  v  11
2 1

 12
2 1

       (3) 

 

where i=D|ki|
2i

-1 and i=1,2. For a pure standing wave, this expression vanishes. Consider 

therefore an imperfect standing wave with k1+k2=k, which is more realistic for granular 
patterns. In this case, it follows that 
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2 k1
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If diffusion dominates the classical Stokes drift, then 1 1 and v D2 , while if the classical 

drift dominates, then 1 1 and v D2. In the case of surface intruder tossing, classical drift is 

expected to dominate, since the intruder will spend much of its time in free flight above the 
granular bed. The acceleration of an intruder in contact with a rising pile of granules will be 
proportional to its diameter and inversely proportional to its mass (assuming constant bed 

pressure), so v mI

1d  and DmI

0.5dI

0.5 . 

SIMULATION DETAILS 

 
A hard-disk two-dimensional molecular dynamics simulation was constructed, 

incorporating angular momentum, friction, and inelastic collapse avoidance [16]. The simulated 
container had a high ceiling and width W delimited by fixed horizontal boundaries. At the 
beginning of each trial run, a granular bed of N monodisperse disks with diameter d0  was 
initialized. Granules were initially placed in a square lattice with separation 2d0, horizontal and 
vertical velocity components randomly distributed in the interval [-0.1,0.1] ms-1, and no angular 
momentum. 



The simulation was event-driven. A calendar with the next scheduled collision event for 
each granule was kept, and selectively recalculated after each collision [17]. In collisions of 
granules with container walls and each other, a velocity-dependent coefficient of restitution [18],  
 

 v 10 v /v0 0.2
,        (5) 

 
was used where v is the component of the relative velocity normal to the tangent plane of 
collision, v0 = 1.0 ms-1. Additional energy was dissipated by friction, parameterized by the 

coefficient .  Following Rapaport [19], relative tangential restitution above a critical impact 

angle was eliminated, with a maximum coefficient of tangential restitution, 0. Inelastic collapse 

was avoided by setting (v) = 1.0 below a cutoff vcrit = 10-6 ms-1. The collision parameters used 
for these experiments are summarized in Table I. 
 
Table I. Parameters used for inelastic collisions. 
Parameter Granule-granule Granule-boundary 

 0.2 0.2 

0 0.0 0.0 

0 0.4 0.2 

 
By convention, the floor height y(t) of a vibrated container evolves as 

 

y(t)  g 2f 2
cos 2ft ,       (6) 

 

for frequency f and dimensionless amplitude . To determine the accuracy of the numerical 

implementation, the dependence of  on f, , and N was measured. These tests were performed 

in an aperiodic container with d0 = 1.5 mm, W = 100 d0, N = 600,  = 3.6, and f = 10 Hz, unless 
otherwise varied. Wavelengths were extracted by calculating the first nonzero peak in the 
autocorrelation function of the granules' horizontal distribution: 
 

  Cx,x '  W  ' 1
h x h x  ' dx

0

W '

      (7) 

The horizontal distribution was found by integrating granule positions over 10 s. Previous results 
[18] were well reproduced across a broad parameter range.  

The main experiment was conducted with parameter values  = 3.6, f = 10 Hz, g = 9.8 
ms-2, N = 180, and d0 = 1.5 mm. The horizontally periodic container, with W = 30 d0, was chosen 

to favor the fundamental mode of the 6-layer bed oscillated at the given values of f and  [16], in 
which at most one pattern peak existed at any time. In addition to the computational benefit of 
this container geometry, the granular force field resembled the desired application of multiple 
intruders being consecutively tossed by a single peak. 

The time evolutions of intruders were measured. The granular fluid was first given t0 = 
0.6 s to develop patterns, after which one diameter d0 and mass m0 granule was removed and 
reintroduced as an intruder with diameter dI and mass mI. The intruder was created at rest at a 
height of 40 d0 above the mean floor position, and horizontally centered (an undistinguished 
position, as the boundary conditions were periodic). Simulations were halted after 2 s. For each 



combination of dI/d0 = 1,3,5,…,23 and mI/m0 = 1,2,4,8, 100 trials were conducted in which the 
initial granule velocities were randomized. An example of an intruder being tossed is shown in  
Figure 1. 
 

 
Figure 1. Time evolution of intruder (mI/m0 = 1, dI/d0 = 15) tossed by a granular pattern over a 
2-s interval. Note that intruder (large disk) was only introduced after supporting pattern formed. 
 
DISCUSSION  
 

 The mean square horizontal displacement x 2  of the intruder ensemble over these trials 

was calculated as a function of time over their 1.4-s existence. At mI = m0 and dI  5 d0, the time 

evolution of x 2  was approximately linear after 0.1 s and consistent with Brownian diffusion 

(see Figure 2). Self-diffusion coefficients were therefore fitted to the last 1.2 s of x 2 , ignoring 

the first 0.2 s of ensemble relaxation. 
 

 
Figure 2. Example evolution of intruder ensemble's mean square horizontal displacement (mI/m0 
= 1, dI/d0 = 7), normalized by the squared container width, W. 
 

The self-diffusion coefficients calculated for each intruder diameter and mass are shown 
in Figure 3. The diffusivity relation was fit by the power law 



 

  D  k mI /m0  dI /d0  ,       (8) 

 

for k = (19.1  2.8) cm2s-1,  = -0.74 ± 0.07, and  = 0.37 ± 0.06. The fitted exponent  was 
more consistent with the 0.5 exponent expected from dominant Stokes drift than the -0.5 

exponent expected from dominant diffusion in a continuum. The fitted value of  was 3.5  
away from the -0.5 value expected for intruder tossing.  
 

 
Figure 3. Horizontal self-diffusion rates for various relative intruder masses, mI/m0, and 
diameters, dI/d0. 
 

For the intruder to remain near a single trough in the granular bed, it should remain 

within /4 of the trough's horizontal position, because the distance between a peak and the 

adjacent peak that rises after time T is /2. Hence, the desirable self-diffusivities are constrained: 
 

  D   /2 2 / 2T  f /8.       (9) 

 
For the standard parameters [18] of the main experiment reported here, the intruder types that are 
positionally stable are constrained by 
 

  
f

mI /m0  dI /d0 
152.8cm2s1.      (10) 

 
Additionally, the average height of the bottom of the intruder was measured as a function of 
diameter for various masses. For dI  5 d0, the bottom height saturated at ~25 d0, indicating that 
the intruder was, in fact, supported by the granular bed and did not crush it. 

RESULTS AND CONCLUSIONS 

 
The horizontal self-diffusivities of surface impurities of various diameters and masses 

were found to scale with mass exponent -0.74 ± 0.07 and diameter exponent 0.37  0.06, 



consistent with dominant Stokes drift. A constraint on the relative masses and diameters of 
impurities that diffused slowly enough to remain horizontally stable over multiple container 
oscillations was derived. 

This result is a step toward granular fluidic manipulation, in which the container 
oscillation function is tuned to individually address the motion of multiple impurities of different 
masses and diameters. In particular, by varying the container frequency, intruder particles might 
be made to cross this boundary in mass-diameter phase space and be immobilized, while a few 
are freed for manipulation by additional degrees of freedom. A better understanding of such 
degrees of freedom as horizontal shaking [20] should therefore be relevant for future studies. 
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