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Relativistic statistical arbitrage
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Recent advances in high-frequency financial trading have made light propagation delays between geographi-
cally separated exchanges relevant. Here we show that there exist optimal locations from which to coordinate
the statistical arbitrage of pairs of spacelike separated securities, and calculate a representative map of such
locations on Earth. Furthermore, trading local securities along chains of such intermediate locations results in
a novel econophysical effect, in which the relativistic propagation of tradable information is effectively slowed

or stopped by arbitrage.
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I. INTRODUCTION

Recent advances in high-frequency financial trading have
brought typical trading latencies below 500 us [1], at which
point light propagation delays due to geographically sepa-
rated information sources become relevant for trading strat-
egies and coordination (e.g., it takes 67 ms, over 100 times
longer, for light to travel between antipodal points along the
Earth’s surface). Moreover, as trading times continue to de-
crease in coming years (e.g., latencies in the microseconds
are already being targeted by traders [2]), this feature will
become even more pronounced.

Here we report a relativistic generalization of statistical
arbitrage trading strategies [3-5] for spacelike separated
trading locations. In particular, we report two major findings.
First, we prove that there exist optimal intermediate locations
between trading centers that host cointegrated [6,7] securities
such that coordination of arbitrage trading from those inter-
mediate points maximizes profit potential in a locally audit-
able manner. For concreteness, we calculate a representative
map of such intermediate locations assuming simplified be-
havior by securities at the world’s largest existing trading
centers. Second, we show that if such intermediate coordina-
tion nodes are themselves promoted to trading centers that
can utilize local information, a novel econophysical effect
arises wherein the propagation of security pricing informa-
tion through a chain of such nodes is effectively slowed or
stopped.

Financial background

Cointegration provides a particularly useful notion of cor-
relation between time series. A pair of time series x,y is said
to be cointegrated if neither x nor y is a stationary stochastic
process, but some nontrivial linear combination of x and y
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(given by a cointegrating vector) is stationary [6,7]. Because
of this stationarity, the linear combination described by the
cointegrating vector will exhibit long-term reversion toward
an equilibrium value [6-9].

Within financial markets, the relevant time series are typi-
cally the logarithms of the prices (log-prices) of financial
instruments. Some of the simpler instances of cointegrated
time series arise from interchangeable financial products,
whose prices will therefore not drift far apart [6]. Such pairs
should be expected for commodities or foreign currencies
that are traded in multiple markets, and for stocks that are
cross-listed (e.g., via American or Global Depository Re-
ceipts) [6,8,10]. Likewise, futures and spot prices form a
cointegrated pair for stock indexes [11] and foreign curren-
cies [12]. More generally, cointegrated time series have been
found among pairs of highly correlated stocks [9,13], larger
portfolios of stocks [14], and groups of foreign currency ex-
change rates [15]. While entire financial markets are not
thought to themselves exhibit mean reversion in log-prices
[16,17], rapid convergence to equilibrium has been found to
hold empirically for the difference in log-prices of cross-
listed securities (up to a small premium) [10,18-20], and to a
lesser, but substantial, degree for linear combinations of for-
eign currency exchange rates [15,21] and highly-correlated
stock pairs [13,22].

To describe the behavior of correlated financial instru-
ments, we will use the Vasicek model [23], which is based on
elastic Brownian motion given by an Ornstein-Uhlenbeck
process [24] and which can be viewed [25] as a continuous
limit of the Ehrenfest urn model of diffusion [26]. The Va-
sicek model was originally introduced to model a tendency
toward long-term mean reversion in the term structure of
interest rates, but has proven to be a flexible general model
for financial assets that exhibit mean reversion [27-29].
Ornstein-Uhlenbeck processes, and their refinements, have
also been used to model stochastic (rather than constant)
volatility within a wide variety of more complex models for
interest rates and stock prices [30-40]. More recently, the
Vasicek model has been used to model pairs trading strate-
gies [41-43] (e.g., between stocks for highly correlated com-
panies in the same industry).
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II. DISCRETE MODEL

We begin by considering the coordination of trades in-
volving two correlated, but spacelike separated, financial in-
struments from a single intermediate location. For concrete-
ness, we will speak of securities (e.g., stocks or bonds),
although the same analysis applies to any rapidly traded and
highly liquid financial instruments, including derivatives
(e.g., options, futures, forwards, or swaps) on an underlying
asset (e.g., stock, currency, commodity, or index).

A. Spatially-separated Vasicek model

Under the Vasicek model for pairs trading, one typically
considers two colocated securities whose log-prices are coin-
tegrated [13,41]. Suppose the cointegrating linear combina-
tion r(¢) has long-term mean b, speed of reversion a, and
instantaneous volatility o. Then r(¢) is given by

dr(t)=a(b-r(1))dt + adW(t), (1)

where W(z) is a Wiener process determined by local condi-
tions.

Here we instead consider the case of two trading centers,
with a spacelike geodesic separation of cr, that respectively
host cointegrated securities having log-prices x(z),y(z), local
speeds of reversion a,.a, and instantaneous volatilities
0y,0y. In the case of cross-listed and dual-listed securities
(which are already spacelike separated, hence amenable to
this analysis), one can take the cointegrating linear combina-
tion to be simply the difference in log-prices (i.e., cointegrat-
ing vector (1,—1)), which will have long-term mean b=0
because the securities are essentially interchangeable
[6,18,20].

Even in more general pairs trading, the cointegrating vec-
tor can often be taken to be approximately (1,—1), with drift
term =0 [13]. Beyond pairs, one could construct such coin-
tegrated linear combinations of securities—one at each spa-
tially separated site (e.g., using principal component analysis
[44] at each site). Furthermore, many other tradable cointe-
grated time series also exhibit vector (1,-1) and drift 0 (e.g.,
in futures and spot prices for stock indexes [11] and foreign
currencies [12], and in macroeconomic indicators [45,46]).
Hence we will work under the assumption that x—y is sta-
tionary with long-term mean 0.

Let V(r), W(z) be independent Wiener noise sources. Then
the decoupled Vasicek processes are

dx(1) = — ax(Ddt + o, dV(1), (2a)

dy(t) = — a,y(t)dt + o, dW(1). (2b)

Now consider an intermediate node along the geodesic at
distance cAt from the center hosting the security with log-
price x, capable of issuing pair trading orders instantaneously
at communication speed ¢ based on locally available infor-
mation (see Fig. 1).

Traditionally, such pair trades are triggered when the ratio
between the two security prices leaves its historical statistical
bound [41,42]. The securities are then unloaded after they
equilibrate, and so ultimate profit derives from maximizing
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FIG. 1. Space-time diagram of relativistic arbitrage transaction.
Security price updates from spacelike separated trading centers
(squares) arrive with different light propagation delays at an inter-
mediate node (circle) at time t=0, whereupon the node may issue a
pair of “buy” and “sell” orders back to the centers.

the statistical significance of the ratio at the times of execu-
tion. In contrast, in our arrangement, profit is also deter-
mined by the locations of execution and we will therefore
want to identify intermediate trading node locations (Ar) that
maximize the security ratio at the respective executions.

Of course, any such intermediate node would lie on the
past light cones of both trading centers, which could together
emulate any prearranged coordination strategy by the node.
However, emulation would be problematic: although the net
position would remain nearly market neutral, this fact could
not be guaranteed at either center in real time. A trader emu-
lating an intermediate strategy would occasionally hold a
very long position at one center and very short at the other,
and so it is essential that the trader be able to convince the
financial exchanges at both centers that the net position is
small in comparison with the position at either center to
avoid onerous capital requirements.

In traditional trading with a single exchange, positions
that offset each other typically incur reduced margin require-
ments [47,48]. However, a dishonest trader in the relativistic
scenario, claiming falsely to implement an emulated strategy,
could make unfair use of these reduced requirements, if al-
lowed to do so, and hence only a guarantee of both transac-
tions should suffice. With an actual intermediate node, this
guarantee could be provided by a local audit. For example,
immediately following a pair trade, the intermediate node
could transmit a message to each center, cryptographically
signed by a trusted local agency, certifying that an offsetting
order to the other center (that is guaranteed to be filled, such
as a market order) had just been issued. In contrast, a trader
not using an intermediate node could not issue such audits in
real time. In order to avoid capital requirements commensu-
rate with the possible position accumulated during the light
propagation delay, such a trader could prearrange audits
(e.g., by making the entire strategy public in advance). In
doing so, though, that trader would then become unable to
adapt strategies based on local events, thereby incurring ad-
ditional risk compared to a local trader at an intermediate
node. Therefore, there is substantial justification for arbitrage
from true intermediate nodes.

B. Calculation of optimal intermediate trading locations

Returning to our analysis of the optimal intermediate node
location (Af), let us now assume, without loss of generality,
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that x(—Ar) > y(=(7—Ar)), so that we are trying to maximize
the security ratio eR(4) = ¥4/ Y720 4t the respective local
times of execution in order to ensure the sign fidelity of the
trade. Now, from the perspective of the intermediate node at
t=0, the expectations of x,y will decay exponentially [23]
back to their long-term (zero) means from their instanta-
neously known values, x(—Af),y(—(7—Ar)):

(R(AD) =x(= A)e 208 — y(= (1= Af)e2H=A0 - (3)

The expected security ratio will reach an extremum when At
satisfies

d{R(At . Y
0= d(R(AD)) =— 20N (X 4 20 X) — e 20AN(Y £ 24Y),
dAt ’
where X=x(-Ar), X=x(-At), Y=y(-(r—Ar), and

Y =y(—(7—Ar)). We obtain a degenerate solution class when
reversion occurs at a particular speed in the absence of noise,
given by

X+2a,X=0=Y+2a,Y, (4)

and a physically relevant solution class, given by

At a, 1 |:
— = + In

X+ 2a,X 5)
' a+a, 2a,+a)T '

Y+ 2ayY

We note that the first term in Eq. (5) depends only on the
long-term behavior of the securities, while the second term is
sensitive to the instantaneous behavior of the securities.

Having identified the extrema, we now constrain our
search to maxima using the inequality

- dX(R(AD))

0
dAF?

e 24 2a (X +2a,X) + X +2a,X]

- e‘z“y(T_A’)[2ay(Y +2a,Y) + Y+ 2ayY],

where X=3i(—At) and ¥ =7(-(7—Ar)). It follows that, for
there to be a global maximum at At,,. where Az,,,. solves
Eq. (5) and 0=Art,,,, =7, it is sufficient (although not nec-
essary) that the following condition be satisfied over the
same range (0=Ar=17):

43X +4a X +X <0<4aY +4a Y +Y. (6)

Heuristically, these conditions are satisfied by sufficiently
sharp price fluctuations including, for example, the following
generic class of locally quadratic price fluctuations:
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x(t) = ko= k (At + 1), (7a)

y(t) == ky + ks(Ar + 7)%, (7b)
where

2a’ky < ky < ky/ 7,
2k, < k3 < kol 7,

aga, < 1/(7'\6),

which correspond to fluctuations whose characteristic fre-
quency f lies in the broad range

max(a,,a,) 7!
— << —=. (8)
m 'n'VE

Such fluctuations should be common in the high-frequency
trading of securities, as we now calculate. For maximally
distant points on Earth, 7= 67 ms, and for adjacent trading
centers, 7 is even smaller (e.g., 7= 1.1 ms for London and
Paris). These imply lower bounds (within this example solu-
tion class) on the characteristic time between exploitable
fluctuations, f~!, of approximately 300 ms for distant trading
centers, 5 ms for adjacent trading centers, and much lower
still for multiple markets within a single city (with different
colocation facilities). On the other hand, typical mean-
reversion times (which determine approximate values of
a;' ,a;l) are typically far longer (e.g., a half-life of 1-5 days
for the equilibration of cross-listed shares [18,20]). Even in
situations where equilibrium is reached in minutes or hours,
Eq. (8) therefore determines a wide interval of relevant fre-
quencies. Crucially, this range includes the typical time
scales exploited in high-frequency trading (e.g., potentially
profitable fluctuations in the 10 ms—10 s range [50]). These
calculations suggest that while arbitrage between distant sites
at the smallest relevant time scales has been technically pos-
sible for several years, the fastest relevant arbitrage between
nearby sites has only recently become technologically
feasible.

C. Example: Optimal trading locations on Earth

For concreteness, we now calculate an example set of
optimal locations for intermediate trading nodes under
the simplifying assumption that such fluctuations are
high  frequency  [f>max(a,,a,)/m, implying that
|5|~2mf>2 max(a,,a,)] and comparable in magnitude but
oppositely signed (X~-Y). Under these assumptions, the
behavior-dependent logarithmic term in Eq. (5) vanishes, and
the optimal intermediate location simplifies to an average of
the two center locations weighted by speeds of reversion,

At=ray/(a,+a,). 9)

Let us furthermore assume that, based on dimensional rea-
soning, the speeds of reversion scale with market turnover
velocities [49].
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Under these assumptions, the optimal intermediate loca-
tions are therefore midpoints weighted by turnover velocity.
In Fig. 2 we compute the optimal intermediate locations, as
such weighted midpoints [Eq. (9)], for all pairs of 52 major
exchanges based on 2008 turnover velocity data reported by
the World Federation of Exchanges [49]. In practice, inter-
mediate locations could be calculated for specific pair trades
using more precisely estimated reversion speeds, or for more
complicated transactions involving more than two securities.

Note that while some nodes are in regions with dense
fiber-optic networks, many others are in the ocean or other
sparsely connected regions, perhaps ultimately motivating
the deployment of low-latency trading infrastructure at such
remote but well-positioned locations.

III. CONTINUUM MODEL

In the previous example, the simplifying assumption of
rapid fluctuations allowed us to ignore the instantaneous be-
havior of individual securities. When instantaneous behavior
is taken into account, all points on the connecting geodesics
between trading centers become potentially profitable loca-
tions for arbitrage nodes. Moreover, once multiple competing
nodes accumulate near a given intermediate location, there is
the opportunity to execute trades locally among themselves,
effectively creating a new trading center at that location.
Nodes at such intermediate centers would be able to execute
local trades and act on local information or events (e.g.,
weather) immediately. Consequently, we now extend our
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analysis of relativistic statistical arbitrage to chains of trad-
ing centers along geodesics.

A. Chain of trading centers

Specifically, let us consider a one-dimensional chain of
trading centers with spacing 4 and communication speed ¢
that host correlated local securities whose log-prices sample
some continuous function u(x,) of geodesic location x and
time 7. Furthermore, assume that the chain is sufficiently
dense that u(x,) varies slowly on length scales of / and time
scales of h/c. For simplicity in characterizing the propaga-
tion of pricing information through the nodes, let us also
assume that the local Wiener noise sources are currently
switched off and that, due to local arbitrage, the security
log-prices revert with common speed a toward the instanta-
neously observed average of log-prices at nearest neighbor
centers. We begin our analysis with three consecutive trading
centers at locations x—h, x, x+h. Under these assumptions,
the Vasicek process for reversion to the instantaneously ob-
served (i.e., retarded by time h/c¢) mean of nearest neighbor
log-prices is given by

u(x+h,t—hic) +ulx—h,t—hic)
2

du(x,t) = a[ —u(x,1) |dt.
Utilizing the assumption of slow variation on length scales of
h and time scales of h/c to expand u to second-derivative
order, we find

h h h h h
Jul x+ —,t— — oul x——,t— — oul x+ —,t— — Julx——,t— —
_a A 2c 2c ﬁ c ﬁ 2c
2 ox ox c ot c ot
h h h
Jul x,t — — dul x,t — — 2(92u X,t——
al , 2¢/ 2h 2c Fu h 2¢
~—|h 5 -— +0| — ~a| — 5 -
ox c ot ox~ ot 2 ox ot

Shifting time forward by //2c, we obtain

h_zﬂzu(x,t) Il&u(x,t)
e oa

bl

h
dul x,t + —
2c
- =y

ot 2 9x? c

and so, expanding the left hand side, we recover a form,

du(x,1) +£&2u(x,t)

g 2c I
2 ox c ot

that can be expressed as a homogeneous telegraph equation
[51-57],
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FIG. 2. (Color online) Optimal intermediate trading node locations (small circles) for all pairs of 52 major securities exchanges (large
circles), calculated using Eq. (9) as midpoints weighted by turnover velocity (from 2008 data reported by the World Federation of Exchanges
[49]). While some nodes are in regions with dense fiber-optic networks, many others are in the ocean or other sparsely connected regions.

FPulx,1) Lﬁzu(x,t) 2(h/c + 1/a) du(x,t)
ax* ahc ot h? Jt

=0. (11)

Previously, the telegraph equation has been widely used as a
model for relativistic diffusion processes [58] and the prob-
ability densities of security prices evolving over time
[59-62]. Here, in contrast, we find that it also models spa-
tially distributed security prices evolving over time.

B. Effect of arbitrage on price propagation

As with the case of a single intermediate node examined
earlier, we are again interested in how price fluctuations
propagate, except now for a dense chain of trading centers.
Substituting u(x,r) =€) where k is the wave number
and w is the angular frequency, we obtain the complex dis-
persion relation

1 1 1
h2k2=—w2+2iw(—+—), (12)
aclh a clh

which we shall now analyze in the dense limit (¢/h> a). For
the two cases of a,w<<c/h and a<<c/h<<w, the dispersion
relation simplifies to

1 w
kz—\/il+‘,
P a( i)

(13a)
w clh
k~=~—F—\1+i—, (13b)
hvaclh w

respectively. From Egs. (13a) and (13b), we can derive the
phase velocities (w/Re k) and propagation lengths (|Im k|~!)
in the three regimes bounded by the characteristic frequen-
cies prescribed by Eq. (8), as summarized in Table I. (Since

prices are nonconservative, the physical interpretation of the
complex group velocity in this limit is not well established
[63].)

In each frequency regime, we can see that the phase ve-
locity is strongly subluminal, which is consistent with the
telegraph equation disallowing superluminal propagation
[52,53,56,58,64,65]. Note that in the absence of arbitrage
couplings between neighboring trading centers (i.e., a=0),
the phase velocity and propagation length both vanish, un-
derlining the critical role of arbitrage at all frequencies.

Let us first examine the low-frequency regime
(w<<a<<c/h). At low frequencies, the propagation length is
much longer than the trading center spacing, /4, and the phase
velocity is much less than ¢, indicating that intermediate ar-
bitrage has slowed—but not stopped—the propagation of
price information through the chain, as parameterized by the
large real refractive index,
cRek c/h

~ > 1. (14)

w vaw

Ren=

In contrast, for the discrete two-center scenario we consid-
ered earlier, in which no arbitrage transactions were executed
at intermediate points, we have n=1.

TABLE 1. Propagation characteristics of price fluctuations
within various frequency regimes along a dense chain of trading
centers, as derived from dispersion relation [Eq. (12)]. Phase veloci-
ties, propagation lengths, and transparency are indicated.

Regime Phase vel. Prop. len. Transparent
w<a<cl/h c:lT_;l" h\% Yes
a<w<<clh cﬁ h \/% No
a<c/h<w C\r% h\% No
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While the chain is transparent to low frequencies, the
chain becomes opaque (i.e., the propagation length is much
less than i) when we move to the intermediate-frequency
regime (¢ <<w<<c/h) at which profitable arbitrage can take
place, according to Eq. (8), and remains opaque in the high-
frequency regime (a <c/h<<w). The onset of opacity should
have the effect of localizing price fluctuations and attenuat-
ing profitable arbitrage between non-nearest neighbor cen-
ters.

Such slowing or stopping of the propagation of pricing
information due to arbitrage is somewhat analogous to the
refraction and scattering of light by a dielectric medium, but
novel in an econophysical context. We note that the effect
exists independently of any communication latency intrinsic
to the underlying hardware infrastructure, and would expect
to observe a similar effect wherever tradable information en-
ters a network “medium” capable of performing local arbi-
trage. This result also raises the possibility of establishing
arbitrage analogs of other concepts from optics and acous-
tics, such as reflection and diffraction.

IV. CONCLUSIONS

In summary, we have demonstrated that light propagation
delays present new opportunities for statistical arbitrage at
the planetary scale, and have calculated a representative map
of locations from which to coordinate such relativistic statis-
tical arbitrage among the world’s major securities exchanges.
We furthermore have shown than for chains of trading cen-
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ters along geodesics, the propagation of tradable information
is effectively slowed or stopped by such arbitrage.

Historically, technologies for transportation and commu-
nication have resulted in the consolidation of financial mar-
kets. For example, in the nineteenth century, more than 200
stock exchanges were formed in the United States, but most
were eliminated as the telegraph spread [66]. The growth of
electronic markets has led to further consolidation in recent
years [49]. Although there are advantages to centralization
for many types of transactions, we have described a type of
arbitrage that is just beginning to become relevant, and for
which the trend is, surprisingly, in the direction of decentrali-
zation. In fact, our calculations suggest that this type of ar-
bitrage may already be technologically feasible for the most
distant pairs of exchanges, and may soon be feasible at the
fastest relevant time scales for closer pairs.

Our results are both scientifically relevant because they
identify an econophysical mechanism by which the propaga-
tion of tradable information can be slowed or stopped, and
technologically significant, because they motivate the con-
struction of relativistic statistical arbitrage trading nodes
across the Earth’s surface.
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