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PARTICLE IN A BOX DETAILS

The causal entropic force parameters used in the simulation were τ = 10 s, Tr = 4× 105 K, and

Tc = 5 Tr. The time step used was ε = 0.025 s.

The Tc values in this example and the others were chosen such that the observed behaviors

were exhibited over approximately 500 time steps. Since the role of Tc is to scale the magnitude

of the causal entropic force, the primary result of smaller Tc values is slower behavior.

The degrees of freedom are summarized in Table I.

TABLE I. Degrees of freedom for particle in a box.

D.O.F. ( j) Forced? Mass (m j) qmin
j qmax

j q j(0) p j(0)

x Yes m 0 L L/10 0

y Yes m 0 L/5 L/10 0

The stochastic equations of motion for the evolution of path microstates (which were sampled

to calculate the causal entropic forces) were

ṗx(t) = gx(x(t), t) = −px(bt/εcε)/ε + fx(bt/εcε) + hx(x(t)) (1)

ṗy(t) = gy(x(t), t) = −py(bt/εcε)/ε + fy(bt/εcε) + hy(x(t)) (2)

q̇x(t) = px(t)/m (3)

q̇y(t) = py(t)/m, (4)

and the deterministic equations of motion for the evolution of the causal macrostate (shown in

Figure 2(a) and Supplemental Movie 1) when subjected to the combined causal entropic force and

expectation energetic force contributions were

ṗx(t) = 〈gx(x(t), t)〉 + Fx(t) = −px(bt/εcε)/ε + Fx(t) + hx(x(t)) (5)

ṗy(t) = 〈gy(x(t), t)〉 + Fy(t) = −py(bt/εcε)/ε + Fy(t) + hy(x(t)) (6)

q̇x(t) = px(t)/m (7)

q̇y(t) = py(t)/m, (8)

where g j(x(t), t) represent the energetic force components defined in the main text, f j(t) represent

the random force components defined in the main text, F j(t) represent the causal entropic force

components defined in the main text, x, y represent the forced degrees of freedom of the particle,
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and h j(x(t)) represent any instantaneous perfectly elastic collision forces of the particle with hard

walls of the universe at qx = 0, L and qy = 0, L/5. The particle mass was m = 10−21 kg. The

allowed region in system phase space was a rectangle with width L = 400 m and height L/5, as

shown in Table I, with momentum components bounded by |p j(t)| ≤ m j(qmax
j − qmin

j )/ε.

CART AND POLE DETAILS

The causal entropic force parameters used in the simulation were τ = 25 s, Tr = 4.0 × 106 K,

and Tc = 20 Tr. The time step used was ε = 0.05 s.

The degrees of freedom are summarized in Table II.

TABLE II. Degrees of freedom for cart and pole.

D.O.F. ( j) Forced? Mass (m j) qmin
j qmax

j q j(0) p j(0)

x Yes m 0 L L/10 0

θ No Ml2 0 2π π 0

The stochastic equations of motion for the evolution of path microstates (which were sampled

to calculate the causal entropic forces) were

ṗx(t)
m

=
gx(x(t), t) + mlq̇2

θ(t) sin qθ(t) − mg sin qθ(t) cos qθ(t)
M + m + m cos2 qθ(t)

(9)

=
−px(bt/εcε)/ε + fx(bt/εcε) + hx(x(t)) + mlq̇2

θ(t) sin qθ(t) − mg sin qθ(t) cos qθ(t)
M + m + m cos2 qθ(t)

(10)

ṗθ(t)
Ml2 =

ṗx(t) cos qθ(t)/m + g sin qθ(t)
l

(11)

q̇x(t) = px(t)/m (12)

q̇θ(t) = pθ(t)/(Ml2), (13)

and the deterministic equations of motion for the evolution of the causal macrostate (shown in

Figure 2(b) and Supplemental Movie 2) when subjected to the combined causal entropic force and
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expectation energetic force contributions were
ṗx(t)

m
=
〈gx(x(t), t)〉 + Fx(t) + mlq̇2

θ(t) sin qθ(t) − mg sin qθ(t) cos qθ(t)
M + m + m cos2 qθ(t)

(14)

=
−px(bt/εcε) + Fx(t) + hx(x(t)) + mlq̇2

θ(t) sin qθ(t) − mg sin qθ(t) cos qθ(t)
M + m + m cos2 qθ(t)

(15)

ṗθ(t)
Ml2 =

ṗx(t) cos qθ(t)/m + g sin qθ(t)
l

(16)

q̇x(t) = px(t)/m (17)

q̇θ(t) = pθ(t)/(Ml2), (18)

where g j(x(t), t) represent the energetic force components defined in the main text, f j(t) represent

the random force components defined in the main text, F j(t) represent the causal entropic force

components defined in the main text, x is the forced horizontal degree of freedom of the cart, θ is

the unforced angular degree of freedom measured from the vertical of the massless pole, hx(x(t))

represents any instantaneous cart-wall collision forces, m = 10−21 kg is the mass at the end of the

pole, M = 10−21 kg is the mass of the cart, g = 9.8 m/s2 is the gravitational acceleration, and

l = 40 m is the pole length. The allowed region in system phase space had width L = 400 m, as

shown in Table II, with momentum components bounded by |p j(t)| ≤ m j(qmax
j −qmin

j )/ε. Collisions

of the cart with the walls at qx = 0, L were perfectly inelastic, and the pole was allowed full angular

freedom.

TOOL USE PUZZLE DETAILS

The causal entropic force parameters used in the simulation were τ = 10 s, Tr = 8.0 × 105 K,

and Tc = 1.25 Tr. The time step used was ε = 0.05 s.

The degrees of freedom are summarized in Table III.

The tube had length 100 m and diameter 80 m. Disc I (with forced degrees of freedom x1, y1)

had mass m1 = m = 10−21 kg and radius 50 m, Disc II (with unforced degrees of freedom x2, y2)

had mass m2 = 0.5m and radius 20 m, and Disc III (with unforced degrees of freedom x3, y3)

had mass m3 = 2m and radius 20 m. The allowed region in system phase space was a square

of width L = 400 m, as shown in Table III, with momentum components bounded by |p j(t)| ≤

m j(qmax
j − qmin

j )/ε. Disc-disc, disc-wall, and disc-tube collisions were all perfectly elastic.

The stochastic equations of motion for the evolution of path microstates (which were sampled
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TABLE III. Degrees of freedom for tool use puzzle.

D.O.F. ( j) Forced? Mass (m j) qmin
j qmax

j q j(0) p j(0)

x1 Yes m 0 L 0.5L 0

y1 Yes m 0 L 0.375L 0

x2 No 0.5m 0 L 0.5L 0

y2 No 0.5m 0 L 0.625L 0

x3 No 2m 0 L 0.9L 0

y3 No 2m 0 L 0.5L 0

to calculate the causal entropic forces) were

ṗx1(t) = gx1(x(t), t) = −px1(bt/εcε)/ε + fx1(bt/εcε) + hx1(x(t)) (19)

ṗy1(t) = gy1(x(t), t) = −py1(bt/εcε)/ε + fy1(bt/εcε) + hy1(x(t)) (20)

ṗx2(t) = hx2(x(t)) (21)

ṗy2(t) = hy2(x(t)) (22)

ṗx3(t) = hx3(x(t)) (23)

ṗy3(t) = hy3(x(t)) (24)

q̇x1(t) = px1(t)/m (25)

q̇y1(t) = py1(t)/m (26)

q̇x2(t) = px2(t)/(0.5m) (27)

q̇y2(t) = py2(t)/(0.5m) (28)

q̇x3(t) = px3(t)/(2m) (29)

q̇y3(t) = py3(t)/(2m), (30)

and the deterministic equations of motion for the evolution of the causal macrostate (shown in

Figure 3 and Supplemental Movie 3) when subjected to the combined causal entropic force and
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expectation energetic force contributions were

ṗx1(t) = 〈gx1(x(t), t)〉 + Fx1(t) (31)

= −px1(bt/εcε)/ε + Fx1(t) + hx1(x(t)) (32)

ṗy1(t) = 〈gy1(x(t), t)〉 + Fy1(t) (33)

= −py1(bt/εcε)/ε + Fy1(t) + hy1(x(t)) (34)

ṗx2(t) = hx2(x(t)) (35)

ṗy2(t) = hy2(x(t)) (36)

ṗx3(t) = hx3(x(t)) (37)

ṗy3(t) = hy3(x(t)) (38)

q̇x1(t) = px1(t)/m (39)

q̇y1(t) = py1(t)/m (40)

q̇x2(t) = px2(t)/(0.5m) (41)

q̇y2(t) = py2(t)/(0.5m) (42)

q̇x3(t) = px3(t)/(2m) (43)

q̇y3(t) = py3(t)/(2m), (44)

where g j(x(t), t) represent the energetic force components defined in the main text, f j(t) represent

the random force components defined in the main text, F j(t) represent the causal entropic force

components defined in the main text, and h j(x(t)) represent any instantaneous disc-disc, disc-wall,

and disc-tube collision forces.

As control experiments – performed implicitly as part of the Monte Carlo path integral calcu-

lations – the model was stochastically evolved 400 times from its initial configuration for duration

τ. In only 15 out of 400 runs (3.75%) was such random evolution able to release Disc III from the

tube such that |qx3(τ) − qx3(0)| ≥ 0.125L or |qy3(τ) − qy3(0)| ≥ 0.1L.

SOCIAL COOPERATION PUZZLE DETAILS

The causal entropic force parameters used in the simulation were τ = 20 s, Tr = 8.0 × 105 K,

and Tc = 2.5 Tr. The time step used was ε = 0.1 s.

The degrees of freedom are summarized in Table IV.
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TABLE IV. Degrees of freedom for cooperation puzzle.

D.O.F. ( j) Forced? Mass (m j) qmin
j qmax

j q j(0) p j(0)

x1 Yes m 0 0.5L 0.35L 0

y1 Yes m 0.5L L 0.75L 0

x2 Yes m 0.5L L 0.65L 0

y2 Yes m 0.5L L 0.85L 0

x3 No m 0.12L 0.88L 0.5L 0

y3 No m 0 L 0.25L 0

y4 No 0.1m 0 L 0.5L 0

Disc I (with forced degrees of freedom x1, y1) had radius 20 m and mass m1 = m = 10−21 kg,

Disc II (with forced degrees of freedom x2, y2) had radius 20 m and mass m2 = m, Disc III (with

unforced degrees of freedom x3, y3) had radius 80 m and mass m3 = m, the “handle” discs at

the ends of the string (with position parameterized by unforced degree of freedom y4) had radius

40 m and mass m4 = 0.1m, and the string had length 400 m. Disc II was initially positioned

with a vertical offset of 0.1L from Disc I. The allowed region in system phase space is indicated

in Table IV, with momentum components bounded by |p j(t)| ≤ m j(qmax
j − qmin

j )/ε. All disc-disc

collisions were perfectly elastic (with the exception of perfectly inelastic disc-handle collisions

perpendicular to the string), and all disc-boundary collisions were perfectly inelastic. The vertical

degree of freedom of Disc III (y3) was subject to a drag force proportional to velocity. Causal

entropic forces on Discs I and II were calculated independently from a common estimated global

causal path distribution, giving neither disc a detailed “theory of mind” of the other.

The stochastic equations of motion for the evolution of path microstates (which were sampled
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to calculate the causal entropic forces) were

ṗx1(t) = gx1(x(t), t) = −px1(bt/εcε)/ε + fx1(bt/εcε) + hx1(x(t)) (45)

ṗy1(t) = gy1(x(t), t) = −py1(bt/εcε)/ε + fy1(bt/εcε) + hy1(x(t)) (46)

ṗx2(t) = gx2(x(t), t) = −px2(bt/εcε)/ε + fx2(bt/εcε) + hx2(x(t)) (47)

ṗy2(t) = gy2(x(t), t) = −py2(bt/εcε)/ε + fy2(bt/εcε) + hy2(x(t)) (48)

T (t) =
2hy4(x(t))m3/m4 − 2hy3(x(t))

2m3/m4 + 4
(49)

ṗx3(t) = hx3(x(t)) (50)

ṗy3(t) = hy3(x(t)) + 2T (t) − Dq̇y3(t) (51)

ṗy4(t) = hy4(x(t)) − T (t) (52)

q̇x1(t) = px1(t)/m (53)

q̇y1(t) = py1(t)/m (54)

q̇x2(t) = px2(t)/m (55)

q̇y2(t) = py2(t)/m (56)

q̇x3(t) = px3(t)/m (57)

q̇y3(t) = py3(t)/m (58)

q̇y4(t) = py4(t)/(0.1m), (59)

and the deterministic equations of motion for the evolution of the causal macrostate (shown in

Figure 4 and Supplemental Movie 4) when subjected to the combined causal entropic force and
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expectation energetic force contributions were

ṗx1(t) = 〈gx1(x(t), t)〉 + Fx1(t) (60)

= −px1(bt/εcε)/ε + Fx1(t) + hx1(x(t)) (61)

ṗy1(t) = 〈gy1(x(t), t)〉 + Fy1(t) (62)

= −py1(bt/εcε)/ε + Fy1(t) + hy1(x(t)) (63)

ṗx2(t) = 〈gx2(x(t), t)〉 + Fx2(t) (64)

= −px2(bt/εcε)/ε + Fx2(t) + hx2(x(t)) (65)

ṗy2(t) = 〈gy2(x(t), t)〉 + Fy2(t) (66)

= −py2(bt/εcε)/ε + Fy2(t) + hy2(x(t)) (67)

T (t) =
2hy4(x(t))m3/m4 − 2hy3(x(t))

2m3/m4 + 4
(68)

ṗx3(t) = hx3(x(t)) (69)

ṗy3(t) = hy3(x(t)) + 2T (t) − Dq̇y3(t) (70)

ṗy4(t) = hy4(x(t)) − T (t) (71)

q̇x1(t) = px1(t)/m (72)

q̇y1(t) = py1(t)/m (73)

q̇x2(t) = px2(t)/m (74)

q̇y2(t) = py2(t)/m (75)

q̇x3(t) = px3(t)/m (76)

q̇y3(t) = py3(t)/m (77)

q̇y4(t) = py4(t)/(0.1m), (78)

where g j(x(t), t) represent the energetic force components defined in the main text, f j(t) repre-

sent the random force components defined in the main text, F j(t) represent the causal entropic

force components defined in the main text, h j(x(t)) represent any instantaneous disc-disc or disc-

boundary collision forces, D ≡ 0.1/ε is the drag coefficient, and T is the string tension.

As control experiments – performed implicitly as part of the Monte Carlo path integral calcula-

tions – the model was stochastically evolved 1, 000 times from its initial configuration for duration

τ. In only 39 out of 1, 000 runs (3.9%) was such random evolution able to pull Disc III to a position

accessible from either of the compartments such that qy3(τ) ≥ 0.3L.
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PATH INTEGRAL CALCULATION DETAILS

The causal entropic force path integral (11) can be calculated by a variety of techniques. In

the case of the example simulations, we chose a Monte Carlo approach, as follows. Consider

M stochastically sampled paths xi(t) starting from the initial system state x(0), where the sample

index is denoted by i and the respective initial effective fluctuating force components are denoted

by fi j(0), such that Pr(xi(t)|x(0)) > 0. For large M, we can estimate the conditional path distribution

Pr(xi(t)|x(0)) as being uniform over a local patch of path-space around each path xi(t) with volume

Ωi ≡ [MPr(xi(t)|x(0))]−1, such that probability is conserved:
∑

i ΩiPr(xi(t)|x(0)) = 1. The path

integral (11) can then be written as

F j(X0, τ) = −
2Tc

Tr

∫
x(t)

f j(0) Pr(x(t)|x(0)) ln Pr(x(t)|x(0))Dx(t) (79)

≈ −
2Tc

Tr

〈∑
i

fi j(0)(MΩi)−1 ln(MΩi)−1Ωi

〉
(80)

= −
2Tc

Tr

1
M

〈∑
i

fi j(0) ln(MΩi)−1
〉

=
2Tc

Tr

1
M

ln M
∑

i

〈
fi j(0)
〉

+

〈∑
i

fi j(0) ln Ωi

〉(81)

=
2Tc

Tr

1
M

〈∑
i

fi j(0) ln Ωi

〉
=

2Tc

Tr

1
M

∑
i

〈
fi j(0) ln Ωi

〉
−

〈
ln
∑

i′
Ωi′

〉∑
i

〈
fi j(0)
〉(82)

=
2Tc

Tr

1
M

〈∑
i

fi j(0) ln
Ωi

〈
∑

i′ Ωi′〉

〉
≈

〈
2Tc

Tr

1
M

∑
i

fi j(0) ln
Ωi∑
i′ Ωi′

〉
, (83)

using the fact that 〈 fi j(0)〉 = 0. Note that the final form is expressed in terms of patch volume

fractions Ωi/
∑

i′ Ωi′ , which can be calculated by kernel density estimation applied to the trajectory

set {xi(tn)} over all samples i.

For reference, pseudocode for performing the particle in a box simulation using this Monte

Carlo approach is shown below. Our full causal entropic force simulation software will be made

available for exploration at http://www.causalentropy.org.
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Pseudocode for particle in a box example

function CALCULATE_CAUSAL_ENTROPIC_FORCE(cur_macrostate)

/* --- Monte Carlo path sampling --- */

sample_paths = EMPTY_PATH_LIST();

for i = 1 to num_sample_paths do

cur_path = EMPTY_PATH();

cur_state = cur_macrostate;

for n = 0 to num_time_steps do

cur_path[n] = cur_state;

cur_state = STEP_MICROSTATE(cur_state);

sample_paths[i] = cur_path;

/* --- Kernel density estimation of log volume fractions --- */

log_volume_fracs = LOG_VOLUME_FRACTIONS(sample_paths);

/* --- Sum force contributions --- */

force = ZERO_FORCE_VECTOR();

for i = 1 to num_sample_paths do

force += sample_paths[i].initial_force * log_volume_fracs[i];

return 2 * (T_c / T_r) * (1.0 / num_sample_paths) * force;

function PERFORM_CAUSAL_ENTROPIC_FORCING(init_macrostate)

cur_macrostate = init_macrostate;

while True do

causal_entropic_force = CALCULATE_CAUSAL_ENTROPIC_FORCE(cur_macrostate);

cur_macrostate = STEP_MACROSTATE(cur_macrostate,causal_entropic_force);

PERFORM_CAUSAL_ENTROPIC_FORCING({"q_x":L/10, "q_y":L/10, "p_x":0, "p_y":0});

∗ To whom correspondence should be addressed: alexwg@post.harvard.edu; http://www.alexwg.org

† Present address: Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, USA
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