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Abstract 

We present a method for computationally 
reconstructing the spatial placement of electrocardiogram 
(ECG) leads using only correlations between their 
recorded signals and without requiring external 
calibration or other prior knowledge. We then apply our 
method to 12-lead ECGs obtained from the training 
dataset of the PhysioNet 2020 Challenge and examine the 
association of various cardiac abnormalities with the 
reconstructed geometries. Finally, we review potential 
clinical applications of our method, including automated 
recommendation of optimal lead placement, simplified 
visual summarization of ECG recordings, and improved 
automated classification of patient conditions. 

 
 

1. Introduction 

Machine learning approaches to analysis of biomedical 
data have been of increasing interest for the purposes of 
both streamlining human interpretation and attaining novel 
insights from large and often complex data sets [1]. Many 
of the principles underlying bioelectrical signals, in 
particular, contain an inherent logic. For example, the 
pattern of electrical deflections seen on a 12-lead 
electrocardiogram (ECG), assuming an ellipsoid heart with 
a single wavefront of activation, will contain within it a 
logical pattern defined by the locations of individual 
patches. During acquisition of the 12-lead ECG, 
misplacement of patches may similarly be identified by 
expert human interpreters due to illogical deviations from 
standard activation patterns. Thus, the inherent logic 
contained within the ECG may be one from which machine 
learning-based approaches may be applied to predict, 
without supervision, where leads may have been 
individually placed relative to the heart. Such a process 
may be valuable in that it may facilitate automated 
approaches to recognizing lead misplacement or offer 
further value in broadly identifying specific cardiac 

conditions leading to deviations from normal activation 
patterns beyond rhythm and interval analysis (e.g., 
myocardial fibrosis, malrotation syndromes, etc.). Here, 
we present the use of a computational approach to 
reconstruct spatial placement of ECG leads without 
requiring prior human annotation or prior definitions.  
 
2. Methods 

Our analysis was focused on 12-lead ECGs obtained 
from the training dataset of the PhysioNet 2020 Challenge. 
Each ECG was sampled at 500 Hz and had a duration of 5-
20 sec, and the set spanned a range of diagnosed cardiac 
conditions. We focused, in particular, on channels 
corresponding to precordial leads (V1-V6) given their 
distinctive geometric placement along a simple curve 
around the chest.  

For our preliminary analysis, initial 6x6 cross-
correlation matrices were obtained by examining 
individual ECGs in their entirety and plotting the trajectory 
in potential-potential phase space of each pair of precordial 
channels during the recording. Initial analysis focused on 
the first patient in the training dataset with one of nine 
isolated diagnosed conditions from the set: Normal, Right 
Bundle Branch Block (RBBB), Atrial Fibrillation (AF), 
Premature Ventricular Contraction (PVC), ST Depression 
(STD), Left Bundle Branch Block (LBBB), ST Elevation 
(STE), Atrioventricular Block (AVB), and Premature 
Atrial Contraction (PAC). No patients with more than one 
diagnosed condition were considered at this stage. 

For the next stage in our analytical pipeline, cross-
correlative lag analysis, we computed the normalized 
cross-correlation 𝑐!,# between channels 𝑎 and 𝑏 over the 
course of an entire ECG recording: 

 

𝑐!,#[𝑘] =
∑ 𝑎[𝑛 + 𝑘]𝑏[𝑛]$

∑ 1![𝑛 + 𝑘]1#[𝑛]$
, 

 
where 1!, 1# denote one-valued time series with the same 
respective durations as 𝑎, 𝑏. We then extracted the lag 𝑘 
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between -30 ms and +30 ms for which the absolute value 
of this cross-correlation was maximized. 

For the third stage of our analysis pipeline, we treated 
the computed pairwise lags between precordial channels as 
the edge weights on a graph whose nodes corresponded to 
the six precordial channels (V1-V6). We then applied the 
NEATO graph layout solver [2] to that weighted graph to 
attempt to estimate a 2-D geometric arrangement of leads 
such that the distance between nodes was proportional to 
the corresponding edge weights. 

For the fourth and final stage of our analysis pipeline, 
we prepared 36-dimensional vectors for the first 4,000 
patients in the training set, each consisting of the pairwise 
lags computed earlier. We then trained linear support 
vector machine classifiers on balanced sets of patients to 
predict whether or not a given patient had been diagnosed 
with that condition. 

 
3. Results 

3.1. Cross-correlations between leads 

We first show correlation plot matrices across 6 
precordial leads for the first patient with each isolated 
condition in the PhysioNet 2020 Challenge Training 
Dataset (see Figure 1). Shown along the diagonal is a 
channel crossed with itself, resulting in a linear scatterplot. 
Note that as distance from the diagonal increases, the 
distance between electrodes increases, and the phase 
diagrams tend to become more circular, which is indicative 
of an increased phase difference between the channel 
signals. Also of note is that the normal patient had more 
circular and less noisy phase loops than the patients with 
cardiac abnormalities. 
 

 
Figure 1. Correlation plots between precordial leads. 

We next show the correlograms between the leads for 
each of the patients, centered on zero time lag (see Figure 
2). Again, along the diagonals, the peak is centered on zero 
time lag, and the peak tends to move away from zero time 
lag as we move away from the diagonals. Off-diagonal 
signal lags of 2-16 ms were physiologically consistent with 
known right atrial nerve conduction speeds [3] of 13-20 
m/s and lead separations of 2.6-32 cm. 
 

 
Figure 2. Correlograms between precordial leads. 

 
3.2. Lead geometry reconstruction 

We show the reconstructed lead geometries for the same 
set of patients (see Figure 3). Of note, the normal and AF 
patients displayed the most linear reconstructions, while 
other conditions corresponded to reconstructions with V1 
and V6 unphysically close to each other and/or crossings 
of edges between physically adjacent leads. 

 

 
Figure 3. Reconstructed lead geometries, using AHA 

color codes to indicate lead identity. 
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3.3.  Inferring conditions from geometries 

We inferred individual conditions from those 
geometries using support vector classification (see Table 
1). Left and right bundle branch block conditions were 
most accurately distinguishable from the normal 
geometries, while first-degree AV block and premature 
atrial complex were least accurately distinguishable from 
normal geometries. 

Table 1. Prediction accuracies from geometries. 
 

Condition  Training/validation 
set size 

Prediction 
accuracy 

LBBB  130 76.2% 
RBBB 1068 73.6% 
STD 500 63.0% 
PVC  398 61.6% 
AF 700 58.6% 
STE 130 58.5% 
I-AVB 432 55.1% 
PAC 358 46.4%  

 
4. Discussion 

We have demonstrated that multi-lead ECG recordings 
from the PhysioNet 2020 Challenge Training Dataset 
contain sufficient information to partially or fully 
reconstruct the relative positions of precordial leads 
without significant prior information. Moreover, we have 
shown that these reconstructed geometries encode 
nontribal diagnostic information about underlying cardiac 
abnormalities.  

This ability to distill high-dimensional ECG recordings 
into simple geometric arrangements opens the door to 
multiple applications of potential clinical value. First, such 
geometries might highlight any misplacement of 
electrodes as deviations from a linear reconstruction, and 
any mistaken swapping of electrodes as corresponding 
node swaps. Second, our method offers a novel means for 
visually summarizing an entire ECG recording at a glance 
with a simple diagram for a physician. Third, our method 
could potentially improve automated classification of 
patient conditions with less training data by reducing ECG 
time series from thousands of dimensions down to 36 
dimensions with demonstrated clinical salience. 
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