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Abstract—Area monitoring using wireless sensor networks that
collect imagery and multimodal data from multiple vantage
points, while requiring only limited local bandwidth and com-
pute resources, promises improved resilience and scalability
over single-camera imagery. However, the distributed nature
of such networks can also increase their relative vulnerability
to subversion via physical tampering. Here we address that
nascent vulnerability by introducing a blockchain application
that (1) learns correlations between low-dimensional projec-
tions of observed sequences captured by pairs of sensors, and
(2) uses those correlations as a baseline for a soft consensus
mechanism that identifies potentially compromised sensors
with the strongest pairwise statistical anomalies. We then
demonstrate our approach in a simulated environment in
which a network of virtual cameras are aimed at a common
dynamical scene from different vantage points, and show that
after a training period of observing baseline behavior followed
by the subversion of various numbers of the cameras, our
application can correctly identify the cameras that have been
compromised. Finally, we explore automated responses to such
compromised sensors, including denying them shared resources
and services.

1. Introduction

Successful operations in future contested environments
are expected to rely heavily upon autonomous agents collab-
orating among themselves and with humans [1]. In particu-
lar, wireless sensor networks that collect imagery and mul-
timodal data from multiple vantage points, while requiring
only limited local bandwidth and compute resources, rep-
resent a class of such agents with promising resilience and
scalability characteristics. However, the distributed nature of
such networks can also increase their relative vulnerability
to subversion via physical tampering.

How can we enable such decentralized area moni-
toring systems to identify, and even tolerate, anomalous
behavior from potentially subverted camera sensors? We
may draw inspiration from the more prosaic problem of
Byzantine Fault Tolerance (BFT), which was solved by

Shostak, Pease, and Lamport [2] with algorithms that are
now widely adopted in blockchain systems and real-time
aircraft systems, among other applications. BFT requires
3N + 1 nodes to achieve correct consensus in the presence
of N malicious nodes, or 3N nodes with digital signatures.
For finely grained, unsigned-sensor anomaly detection and
correction, that would mean 3×1+1 = 4X redundant image
coverage of monitored areas. If we arranged cameras naively
in collocated 4-clusters, as shown in Figure 1(a), we could
achieve local BFT, but each sensor would be vulnerable to
common physical attacks on its cluster, negating the benefits.
To address that issue, a better arrangement for 4X coverage
would be a mesh of cameras with overlapping fields of view,
as shown in Figure 1(b). However, if camera groups share
overlapping coverage areas, but do not generate replicated
data due to their differing vantage points, as illustrated
in Figure 1(c), can fault tolerance still be achieved? Here
we report a solution to that problem by implementing a
blockchain smart contract that learns correlations between
camera streams and uses those correlations as a baseline
for a soft consensus that identifies cameras with the most
pairwise statistical anomalies, as illustrated in Figure 1(d).

2. Theory

Our theoretical approach to achieving soft consensus
among imagery sensors assumes that we capture at least
one frame of video per camera i per blockchain block t,
and compute a scalar projection ci,t of the frame to avoid
needing to store entire images on-chain. For simplicity, we
chose ci,t to be the sum of pixel intensities over RGB
channels of each image.

To accommodate differing vantage points, we focused on
tracking pairwise linear correlations between camera image
projections, since dynamic environments will often present
visual anomalies at the single-camera level, but historical
correlations between cameras with overlapping fields of
view should be stationary under normal conditions. For sim-
plicity, we further assumed camera positions whose image
projections would be positively correlated, allowing us to
focus on detecting anomalous differences di,j,t = cj,t − ci,t
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Figure 1. Schematic illustrations motivating our approach to fault-tolerant
area monitoring. (a) Naive arrangement of cameras into collocated 4-
clusters. (b) Mesh of cameras with 4X overlapping coverage. (c) Soft
consensus among cameras with different vantage points and one subverted
camera. (d) Our approach to detecting subversion through correlation
statistics between pairs of cameras.

between cameras i, j. A more general approach for the
future might utilize Mahalanobis distances [3] to allow for
negative correlations as well.

When a new projection from camera i was reported, we
calculated new pairwise z-scores between cameras i, j 6= i:

zi,j,t =
di,j,t − 1

t

∑
t′<t di,j,t′√

1
t

∑
t′<t d

2
i,j,t′ −

1
t2

(∑
t′<t di,j,t′

)2

TABLE 1. SIMULATED SCENARIOS USED FOR VALIDATION

Scenario Name Description

I Normal A vehicle moves through an in-
tersection and is observed by all
four cameras.

II False Negative A vehicle moves through an in-
tersection and is observed by
three cameras, but the fourth
camera has been subverted and
sees an empty road.

III False Positive An intersection is empty and is
observed as such by three cam-
eras, but the fourth camera has
been subverted and sees a vehi-
cle.

IV Partial Occlusion A vehicle moves through an in-
tersection and is fully observed
by three cameras, but the fourth
camera is partially blocked and
cannot see the full vehicle.

using only blockchain-compatible integer arithmetic:

z2i,j,t =

(
di,j,tt−

∑
t′<t di,j,t′

)2
t
∑

t′<t d
2
i,j,t′ −

(∑
t′<t di,j,t′

)2 .
By convention, we considered pairwise z-scores above

the threshold of 3-sigma to be anomalous. For N = 4
overlapping sensors, a total of at least 2(N−1) = 6 pairwise
anomalies over two consecutive blocks involving a given
camera i could therefore be interpreted as a soft consensus
that camera i’s individual behavior was anomalous.

3. Experiment

To validate our approach to learned soft consensus for
fault-tolerant distributed area monitoring, we used the AN-
VEL simulation environment [4] to explore four experimen-
tal scenarios, as enumerated in Table 1. In the first scenario
(I), a vehicle was manually driven through a multiway urban
intersection overseen by a vertical tower of four normal
cameras with overlapping but distinct fields of view, as
shown in Figure 2. In the remaining three scenarios, a
single camera was subverted to falsely report no vehicle
(II), one vehicle (III), or a partial vehicle (IV), respectively.
Camera oracles reported projections of their 640×480 image
captures every ca. 5 seconds, matching the 5-second block
time.

For the supporting blockchain, we used ARL’s Tactical
Distributed Ledger (TDL), an extensible tiered computing
framework of decentralized Ethereum [5] applications over-
laid on a peer-to-peer network. TDL allows participants to
register available services and capabilities, request services
of each other, dynamically deploy new capabilities as the
need arises, and collaborate on computing tasks in an ad-hoc
environment. The anomaly-detection contract represented
just one module within a web of smart contracts forming
the TDL, as shown in Fig 3.
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Figure 2. Vertical tower of angled cameras (seen on the left) overlooking
a vehicle in a multiway urban intersection, as simulated in ANVEL.

Figure 3. Schematic illustration of the ARL Tactical Distributed Ledger
(TDL) web of smart contracts, including the anomaly-detection contract
reported here (circled in red).

4. Results

In every scenario that we considered, after an initial
“burn-in” training period of several blocks, during which
normal pairwise camera correlations were learned, the smart
contract was able to correctly identify the absence (Scenario
I) or presence (Scenarios II, III, and IV) of subversion.
Moreover, in the presence of subversion, the smart contract
correctly identified the specific camera that was reporting
manipulated video. In the normal Scenario I, following
initial burn-in, the theoretical threshold of 6 recent pairwise
anomalies was never reached (as seen in Figure 4). In
contrast, that threshold was reached immediately upon sub-
version of a single camera by, and only by, recent pairwise
anomalies for that camera in Scenarios II (Figure 5), III
(Figure 6), and IV (Figure 7), demonstrating the sensitivity
and specificity of our approach.

5. Conclusions

We have presented a new approach to tamper-proofing
of imagery, in which statistical learning was combined with

Figure 4. Recent anomalies detected over time (block) for Scenario I
(Normal).

Figure 5. Recent anomalies detected over time (block) for Scenario II (False
Negative).

Figure 6. Recent anomalies detected over time (block) for Scenario III
(False Positive).

a blockchain-based consensus mechanism to detect pairwise
anomalies between manipulated and unmanipulated camera
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Figure 7. Recent anomalies detected over time (block) for Scenario IV
(Partial Occlusion).

streams. We demonstrated our approach in a simulated
physical environment in which networked virtual cameras
were aimed at a common dynamical scene from different
vantage points. We showed that after a training period of
observing baseline behavior followed by the subversion of
a camera, our system could correctly identify the camera
that had been compromised. Our approach opens the door to
automated responses to subverted image sensors, including
denying them shared resources and services. More gener-
ally, our approach to tamper-proofing imagery using learned
blockchain consensus promises to improve the resilience and
scalability of area monitoring.
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