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Abstract
To bring the full benefits of machine learning to defense modeling and simulation, it is essential to first learn useful repre-
sentations for sparse graphs consisting of both key entities (vertices) and their relationships (edges). Here, we present a
new model, the Joint Sparsity-Biased Variational Graph AutoEncoder (JSBVGAE), capable of learning embedded repre-
sentations of nodes from which both sparse network topologies and node features can be jointly and accurately recon-
structed. We show that our model outperforms the previous state of the art on standard link-prediction and node-
classification tasks, and achieves significantly higher whole-network reconstruction accuracy, while reducing the number
of trained parameters.
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1. Introduction

Conventional defense, in which kinetic effects tend to be

localized near forces and capabilities, is three-dimen-

sional. In contrast, all-domain defense is intrinsically high-

dimensional in the sense that flipping a bit on one side of

the planet can affect mission outcomes on the other, and

thus challenging for humans to plan, direct, monitor, and

assess. Therefore, optimally effective and efficient defense

must leverage modern machine-learning techniques to

analyze and reduce high-dimensional spaces to lower-

dimensional representations that human commanders,

planners, operators, and analysts can rapidly understand

and manage. The entities and relations that comprise such

high-dimensional spaces, with many features, as well as

multi-modal spaces, with multiple types of data, can be

represented naturally by graphs of varying density, with

nodes representing actors, assets, and targets, and links

representing effects and relationships. For example, milita-

rily relevant graphs commonly include social and sensor

networks. Graph embedding techniques are often used to

make such networks available to downstream machine

learning tasks.1,2 Motivated by the insight that such net-

works are of varying density,3 here we introduce a new

model for learning embedded representations of sparse

graph vertices and edges that can enable key entity and

relationship information to be learned jointly.

2. Related work

A popular approach for unsupervised learning of graph

embeddings is the original variational autoencoder model

for graphs proposed by Kipf and Welling.4 The authors

introduced a spectral graph convolution (GC) layer that

combined vertex feature information with graph topology.

After generating vertex embeddings with stacked GC

layers, they reconstructed the graph topology using a unary

matrix inner product and passing the result through a sig-

moidal activation function. However, as we show in this
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paper, this decoder model, which was only evaluated on a

balanced link-prediction task, does not generalize well to

sparse graphs.

Tran introduced LoNGAE,5 the local neighborhood

graph encoder – and αLoNGAE, with a feature-augmented

adjacency matrix – with the goal of performing well on

both link-prediction and node-classification tasks. This

model used a symmetric encoder and decoder with shared

parameters to learn node embeddings based on their local

network neighborhoods. Xie et al. generalized this multi-

task-oriented approach to graph representation learning

with the multi-task network representation learning

(MTNRL) framework,6 meant to allow graph representa-

tion models to train so as to optimize performance an arbi-

trary set of downstream tasks. They implemented this

framework on multi-task graph attention networks (MT-

GATs), optimized to perform link prediction and

clustering.

Lerique et al. introduced the Attributed Network to

Vector (AN2VEC) model,7 capable of decoding both node

features and network topology from the same embeddings

using two decoder heads: a weighted bilinear decoder for

topology and a two-layer feed-forward neural network for

node features. The topological and node embeddings were

allowed to share some parameters and keep some para-

meters independent in the final embeddings; this ratio was

controllable before training. Although our model uses a

similar dual-headed decoder, it has two key differences:

first, instead of a weighted bilinear adjacency matrix deco-

der, we use a simpler inner-product decoder with an addi-

tive bias term; and second, we do not feature-engineer the

allocation of any parameters in the node embeddings to

solely represent topology or node features.

Recent work has demonstrated the power of semi-

supervised learning,5,6,8 wherein embedded representations

are first pre-trained through unsupervised learning tasks

such as autoencoding, and then later applied to, or fine-

tuned on, narrower tasks (e.g., link prediction or node clas-

sification) that may not be known a priori. Motivated by

that goal, especially in the context of defense modeling

and simulation, where inference may take place at a higher

classification than training, we focus here on accurately

reconstructing autoencodings as a universal objective.

More broadly, in contrast to these previous studies, we

expand our evaluation of graph autoencoder performance

beyond the standard link-prediction and node-classification

tasks due to their inability to generalize to sparse networks

and decode node features. For example, the standard link-

prediction task introduced by Kipf and Welling uses an

artificially balanced evaluation set consisting of equal

numbers of positive and negative edges,4 which obscures

poor performance on sparse graphs. Furthermore, none of

the related studies we have mentioned evaluates whole-

graph topological errors, motivating us to evaluate recon-

struction of every edge, and every node feature vector, in

the graph.

3. Model architecture

Our model is derived from the original Variational Graph

AutoEncoder (VGAE) introduced by Kipf and Welling,4

with several key changes. The foremost architectural dif-

ference is our model’s second decoder head, which allows

reconstruction of the original node features, in addition to

the adjacency-matrix-reconstruction head. We also refor-

mulated the adjacency matrix’s inner-product decoder to

include a trainable bias term, to improve sparse graph

reconstruction performance.

3.1. Encoder

As in the original VGAE paper, our encoder uses a single

GC layer to produce a hidden representation, which is then

shared by two independent GCs responsible for producing

the means and standard deviations for the Gaussian distri-

butions from which the node embeddings are sampled.

We also employ a refinement proposed by Kipf and

Welling in a follow-up paper,8 where the adjacency matrix

A is first transformed into ~A=A+ lI, where l is a hyper-

parameter, effectively weighting self-connections higher

than neighbor connections in the graph convolution’s

Laplacian smoothing.

3.2. Topology decoder head

As shown in Figure 1, our model encodes an adjacency

matrix A and a matrix of node feature vectors X into

embeddings Z, and then decodes Z along two indepen-

dent paths. The first path uses pairwise vector inner prod-

ucts, which include implicit cosine-similarity terms,

between the node embeddings to predict links in the origi-

nal network.

Although Kipf and Welling originally defined the adja-

cency matrix edge probabilities as σ(ZZT ), 4 we observed

that the inner product ZZT contains few values less than

zero, resulting in edge probabilities largely above 0:5 after

applying the sigmoid function. This is perhaps unsurpris-

ing given that if Z is invertible then ZZT is positive-defi-

nite. As a consequence, the decoded adjacency matrices

are dense. We addressed this by adding a trainable bias

term b to the inner-product decoder: σ(ZZT + b): This

term allows the topology decoder head to re-center the

inner product before normalizing it to reconstruct the level

of sparseness of the input graph, effectively tuning the

average element magnitude of the reconstructed adjacency

matrix.
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3.3. Node feature decoder head

We also augment the original Kipf and Welling model

with a second decoder head, trained to reconstruct the orig-

inal node features X from the embeddings Z:
In choosing an architecture for the node feature decoder

head, we observed that a simple feed-forward layer with a

sigmoid activation is a special case of the symmetrical

adjacency matrix graph convolution rule given by Kipf

and Welling8: H(l + 1) = σ(D̂
1
2ÂD̂

1
2H(l)W(l)), where

Â=A+ I, D̂ is the diagonal node degree matrix of Â,

and W(l) and H(l) are the weights and inputs, respectively,

of the l-th hidden layer of the graph convolutional net-

work. If Â is the identity matrix, i.e., no nodes neighbor

any other nodes, then its symmetrically normalized

Laplacian, D̂
1
2ÂD̂

1
2, simplifies to the identity matrix I, and

the propagation rule simplifies to H(l + 1) = σ(H(l)W(l)),

which is the propagation rule for a simple feed-forward

neural network.

Interpreted this way, our architecture’s two-layer, feed-

forward node feature decoder renders the end-to-end fea-

ture reconstruction pathway of our model symmetrical:

two encoder GC layers convolve the input features with

A, and two decoder GC layers convolve the hidden fea-

tures with the identity matrix before decoding them into

their original form. By ignoring topology of the decoder

GC layers, we can avoid calculating symmetrically nor-

malized Laplacians and accelerate training.

4. Training
4.1. Objective

As our model is a variational autoencoder, it assumes that

the adjacency matrix A and the node feature matrix X are

sampled from a probability distribution p(A,XjZ), condi-

tioned on latent variables Z: The model’s decoder defines

the factorized generative model p(A,XjZ)= p(AjZ)

p(XjZ), assuming that A and X are conditionally indepen-

dent given the latent variables Z: The model’s encoder

defines q(ZjA,X), which is trained to approximate the

true posterior distribution p(ZjA,X): We assume an iso-

tropic Gaussian prior p(Z)= QjZj
i= 1N (zij0, I):

We train our model using full-batch gradient descent to

maximize the variational lower bound

L= Eq(ZjX,A)½logp(AjZ)�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Topology reconstruction loss

+ Eq(ZjX,A)½logp(XjZ)�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Node feature reconstruction loss

� βDKL½q(ZjX,A)jjp(Z)�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Weighted KL divergence regularizer

ð1Þ

where

p(AjZ)= QN

i= 1

QN

j= 1

p(Ai, jjzi, zj)

with p(Ai, j = 1jZi,Zj)= σ(ZT
i Zj + b)

ð2Þ

and p(XjZ) is defined by the two-layer neural network in

the decoder, shown in Figure 1.

The topology reconstruction loss term in Equation 1 is

defined as the binary cross-entropy loss between the recon-

structed adjacency matrix Â= σ(ZZT + b) and the input

adjacency matrix A: The node feature reconstruction loss

term is defined as the mean squared error between the recon-

structed node features X̂ and the input node features X:

4.2. Datasets

To empirically investigate our technique’s suitability to

defense, which frequently centers on globally sparse,

multi-topic, information-sharing networks3, we selected

three well-studied citation-network datasets as open-source

proxies for analysis.

We performed experiments on our model trained on

each of the CORA9, Citeseer10, and PubMed11 datasets,

where nodes represent papers and links represent citations.

CORA and Citeseer nodes have associated feature vectors

consisting of binary, multi-hot encodings indicating the

presence or absence of vocabulary words in paper titles.

The PubMed node feature vectors are term frequency–

inverse document frequency (TF/IDF)-weighted word fre-

quencies for the entire document. The CORA dataset con-

tains 2708 nodes with 5429 links, the Citeseer dataset

Figure 1. The architecture of our auto-encoder. Green blocks
represent operations with trained parameters. X refers to the
node features, A refers to the adjacency matrix, and X̂ and Â
refer to their respective decoded counterparts. Zm and Zs refer
to the parameters of the Gaussian distributions from which the
embeddings, Z, are sampled at each training iteration.
GC, graph convolution.
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contains 3312 nodes with 4732 links, and the PubMed

dataset contains 19,717 nodes with 44,338 links.

The three standard citation networks on which we eval-

uated our model are representative of a large variety of

other militarily relevant attributed graphs, whose node fea-

tures are also encoded as sparse binary vectors, including

user attributes and natural language text in social media

networks,12,13 and sensor output data in sensor

networks.14,15

We performed link-prediction and node-classification

experiments for each dataset, and evaluated reconstruction

of the node feature vectors and network topology for the

CORA dataset. We also include a discussion of observed

useful properties of the learned latent space for the CORA

dataset.

4.3. Preprocessing

For training, we used the versions of these datasets pro-

vided by the Deep Graph Library (DGL).16 For numerical

stability, before training, we normalize the graph’s node

features X to be distributed with a mean of 0 and a var-

iance of 1. Apart from this normalization, we made no

other changes to the DGL datasets.

4.4. Hyperparameters

We used a hidden dimension of 1024 in our encoder graph

convolutions and the two-layer feature decoder head, and

an embedding dimension of 512 for Z on the CORA data-

set (note that, for the Citeseer dataset we used the same

dimensions. For the larger and denser PubMed dataset, we

used a hidden dimension of 2048 and an embedding

dimension of 1024). Our KL divergence weight term, β,

was set to 0.4. We performed a hyperparameter search for

the optimal value of the encoder’s l∈ f2, 4, 8, 16, 32g,
which yielded a value of l= 8 in all three encoder graph

convolutions that minimized node feature reconstruction

loss. Using the ADAM optimizer and a learning rate of

0.001, we trained for 23,000 epochs.

5. Results
5.1. Link prediction

We measured our autoencoder’s performance on a stan-

dard link-prediction task with the CORA, Citeseer, and

PubMed citation network datasets. Using the same proto-

col as Kipf and Welling,4 we trained our model on 85% of

the edges, and evaluated link prediction using a validation

set of 10% of held-out edges and a test set of the remain-

ing 5%. We report the results in Table 1. Our model out-

performs the others we tested on the CORA and Citeseer

datasets, and performs competitively on the PubMed data-

set. However, we believe that this task is an incomplete

measure of graph reconstruction ability, as we discuss in

the next section.

5.2. Node classification

To more fully illustrate our model’s applicability to stan-

dard downstream tasks, we evaluated the ability of a shal-

low classifier to classify our model’s node embeddings

into labeled document classes, which were not provided

during the initial training process. We used a one-versus-

rest support vector machine (SVM) classifier architecture,

with a radial basis function kernel and a misclassification

cost of C = 32: We trained the classifier on 90% of the

nodes from links held out of the initial training process

and validated it on the remaining 10%.

The validation accuracy results are reported in Table 2.

While our model outperformed all other evaluated models

on node classification in all three datasets, this result is

perhaps unsurprising given our comparatively high node

embedding dimensions of 512 or 1024, which we selected

for accurate node feature reconstruction.

Table 1. Citation dataset link-prediction performance, both area under the receiver operating characteristic (ROC) curve (AUC)
and average precision score (AP). The best score of each column is in bold typeface.

CORA Citeseer PubMed

Model AUC AP AUC AP AUC AP

GAE 0.910 0.920 0.895 0.899 0.964 0.965
VGAE 0.914 0.926 0.908 0.920 0.944 0.947
LoNGAE 0.896 0.915 0.860 0.892 0.926 0.930
αLoNGAE 0.943 0.952 0.956 0.964 0.960 0.963
MT-GAT 0.930 0.963 0.931 0.963 0.968 0.970
AN2VEC 0.930 0.935 0.949 0.951 0.931 0.931
JSBVGAE (ours) 0.984 0.977 0.972 0.971 0.968 0.974
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5.3. Topology reconstruction

As Kipf and Welling describe the link-prediction task now

standard in graph autoencoding literature,4 there are an

equal number of positive and negative links evaluated to

produce the final score. Given that most graphs have unba-

lanced adjacency matrices, we believe that a more repre-

sentative measure of adjacency matrix autoencoding

accuracy is the F1 score of the full reconstructed adja-

cency matrix.

Although the model presented by Kipf and Welling

achieved an area under the receiver operating characteristic

(ROC) curve (AUC) of 0.914 and an average precision of

0.926 on the CORA dataset,4 their reconstruction (Figure

2c) had three orders of magnitude more positive edges than

the original graph (Figure 2a), and its F1 score on full

CORA adjacency matrix reconstruction was only 0.007,

while our model achieved an F1 score of 0.851 (Figure 2b).

5.4. Node feature reconstruction

CORA node features are 1433-dimensional, binary-valued,

multi-hot word vectors in which each dimension indicates

the presence or absence of the corresponding vocabulary

word in the document the node represents. Each feature

vector is divided by the sum of its positive dimensions in

the original dataset. Due to this, and to our own pre-

training node feature normalization, even perfectly recon-

structed features are not directly interpretable as a binary

vector.

To convert the real-valued output, X̂, of the node fea-

ture decoder head into a binary vector, we clustered each

dimension of X̂ according to a k-means analysis with

k = 2: The dimensions in the larger-valued cluster are

interpreted as 1, and the rest as 0.

Our autoencoder was able to recreate the 1433-dimen-

sional CORA node features with an average F1 score of

0.986 per record, and 0.984 across the concatenated matrix

of all records. The latter reconstruction, along with the

error matrix, is visualized in Figure 3.

5.5. Latent space properties

Our biased inner-product decoder appears to avert the

issue observed by Kipf and Welling,4 wherein embeddings

were pushed away from the origin. As seen in Figure 4,

our latent space is clustered loosely by document type,

with significant variance in two dimensions owing to the

projection from a 512-dimensional space, many of which

dimensions are used to encode node features.

As exemplified in Figure 5, the nearest neighbors of a

node in embedding space are trained to be the vertices it is

connected to in the input graph, but the next few nearest

neighbors tend to be documents that are of the same class,

but not directly connected by an edge. This hierarchical

property of the distance metric, which captures both topo-

logical and feature similarity but weights the former

higher, may reflect the known tendency of link data in

citation networks to cluster more tightly than text data.22

Figure 2. (a–c) Comparison between original CORA citation network topology (a), our topological reconstruction (b), and the
Kipf autoencoder reconstruction (c).4 All three networks are visualized with the ForceAtlas2 algorithm,20 with node radius scaled
by degree. By visual inspection, our model can reconstruct the sparse citation network, including its high-degree hub nodes, while
the Kipf reconstruction is sufficiently dense that the original topology cannot be easily discerned.

Table 2. Citation dataset node classification accuracy. The best
score of each column is bolded.

Model CORA Citeseer PubMed

αLoNGAE 0.783 0.716 0.794
GCN8 0.815 0.703 0.790
Planetoid17 0.757 0.647 0.772
ICA18 0.751 0.691 0.739
DeepWalk19 0.672 0.432 0.653
JSBVGAE (ours) 0.838 0.736 0.812
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6. Discussion

Our model, although promising, has a number of limita-

tions that we will now review, together with potential

model generalizations that address them. First, due to its

scalar bias term, our model’s network topology decoder

implicitly favors globally consistent sparsity. By incorpor-

ating an additive bias matrix, we could generalize our tun-

able sparsity to accommodate localized density variations.

Second, although our model’s variationality makes it a

generative graph model, the naive generative method of

sampling and decoding latent variables from unit

Figure 3. CORA’s feature matrix, our reconstruction, and the error. Each row represents a document as a binary vector indicating
the presence of each of 1433 words.

Figure 4. A visualization of our encoder’s latent representation
of CORA, constructed using the uniform manifold
approximation and projection (UMAP) algorithm.21 Colors
indicate canonical document class (not provided during training).
Gray lines indicate edges in the graph. The learned latent space
has clustered similar document types without knowledge of
those labels.

Figure 5. Lines showing the five nearest neighbors of an
embedded document in the CORA latent space. Red lines
indicate that the nearest neighbor is also connected by an edge
in the graph. The lowest scores tend to go to topological
neighbors, with the remaining nearest neighbors being
unconnected documents of the same class.
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Gaussians did not perform well for our model. To general-

ize our model by taking advantage of its theoretical gen-

erative capabilities, our model could be trained on more

graphs in an inductive setting. Third, our model assumes

that pre-trained embeddings of node features are provided

as input, rather than raw features. By extending our model

to also train node feature encoders, we could apply our

model directly to raw node data and learn optimal feature

embeddings for reconstruction. Fourth, while our model’s

nodes are attributed (i.e., featureful), the links only encode

one bit of information. In the future, our model could be

generalized to encode and reconstruct arbitrary link fea-

tures in a similar way. Finally, our model does not yet

apply to dynamic graphs that change over time. By per-

forming stochastic gradient descent in an online- or

lifelong-learning setting, we could potentially update our

model continuously as graph mutations stream in.

More broadly, our results suggest a number of avenues

for follow-up work. Because of our learned latent space’s

ability to hierarchically encode multiple distinct distance

metrics, future work with our model might investigate the

reconstruction of heterogeneous graphs with multiple distinct

node and link types. Additionally, the performance of our

model on other well-studied attributed graphs,23,24 as well as

on smaller networks, should be examined. Finally, the poten-

tial of our model to extrapolate large, unseen regions of par-

tially observable graphs warrants further study.

7. Conclusion

We have presented a novel graph autoencoder architecture

that: (1) can accurately reconstruct the node features and

link structures of the entire original networks, including

held-out links from partially observed networks; (2) learns

hierarchical node embeddings in which directly connected

nodes are nearest neighbors, and nodes with similar fea-

tures are next-nearest neighbors; and (3) achieves state-of-

the-art performance on existing benchmarks for standard

datasets. In particular, our architecture’s ability to repre-

sent both direct network links and node-feature-based

similarities in a single vector space enables it to reveal

important patterns in high-dimensional spaces. In the con-

text of defense, this ability promises to enable comman-

ders, planners, operators, and analysts to more rapidly

classify featureful entities and sparse relationships in tacti-

cal, operational, and strategic graphs for unsupervised

detection of anomalies and similarities, and semi-

supervised estimation of node criticality, accessibility,

recuperability, vulnerability, effect, and recognizability.25
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